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Problem 2.3

Find the electric field a distance z above one end of a straight line segment of length L (Fig. 2.7)
that carries a uniform line charge λ. Check that your formula is consistent with what you would
expect for the case z ≫ L.

Solution

Start by drawing a schematic for some point on the line segment.

The formula for the electric field from a continuous distribution of charge along a line is
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where the integral is taken over the line where the charge exists. Note that r is the position
vector to where we want to know the electric field, r′ is the position vector to the point we chose
on the line, and r = |r− r′| is the distance from the point we chose on the line to where we want
to know the electric field. The electric field at r = ⟨0, 0, z⟩ is
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Make the following substitutions in these two integrals.

u = x′2 + z2 x′ = z tan θ → x′2 + z2 = z2(tan2 θ + 1) = z2 sec2 θ

du = 2x′ dx′ dx′ = z sec2 θ dθ

Consequently,
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Draw the triangle implied by α = tan−1(L/z) and use it to determine sinα.

sinα =
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Therefore, the electric field at r = ⟨0, 0, z⟩ is
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In order to see what happens if z ≫ L, rewrite the formula so that each term is a ratio of L and
z, z being in the denominator, and get rid of the square roots by using the binomial theorem.
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If z ≫ L, then L/z is small, but L2/z2 and higher-order terms are so much smaller by comparison
that they can be neglected.
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The lesson is that far away from the line segment the electric field is the same as if it were a point
charge.
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