Problem 2.3

Find the electric field a distance z above one end of a straight line segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your formula is consistent with what you would expect for the case $z \gg L$.

Fig. 2.7

Solution

Start by drawing a schematic for some point on the line segment.

The formula for the electric field from a continuous distribution of charge along a line is

$$
\begin{aligned}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\boldsymbol{\imath}^{2}} \hat{\boldsymbol{z}} d l^{\prime} & =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) d l^{\prime} \\
& =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\lambda\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) d l^{\prime},
\end{aligned}
$$

where the integral is taken over the line where the charge exists. Note that \mathbf{r} is the position vector to where we want to know the electric field, \mathbf{r}^{\prime} is the position vector to the point we chose on the line, and $\boldsymbol{z}=\left|\mathbf{r}-\mathbf{r}^{\prime}\right|$ is the distance from the point we chose on the line to where we want to know the electric field. The electric field at $\mathbf{r}=\langle 0,0, z\rangle$ is

$$
\begin{aligned}
\mathbf{E} & =\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{L} \frac{\lambda}{\left[\sqrt{\left(0-x^{\prime}\right)^{2}+(0-0)^{2}+(z-0)^{2}}\right]^{3}}\left(\langle 0,0, z\rangle-\left\langle x^{\prime}, 0,0\right\rangle\right) d x^{\prime} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{L} \frac{1}{\left(x^{\prime 2}+z^{2}\right)^{3 / 2}}\left\langle-x^{\prime}, 0, z\right\rangle d x^{\prime} \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\int_{0}^{L} \frac{-1}{\left(x^{\prime 2}+z^{2}\right)^{3 / 2}} x^{\prime} d x^{\prime}, 0, z \int_{0}^{L} \frac{d x^{\prime}}{\left(x^{\prime 2}+z^{2}\right)^{3 / 2}}\right\rangle .
\end{aligned}
$$

Make the following substitutions in these two integrals.

$$
\begin{aligned}
u & =x^{\prime 2}+z^{2} & x^{\prime}=z \tan \theta \quad \rightarrow \quad x^{\prime 2}+z^{2}=z^{2}\left(\tan ^{2} \theta+1\right)=z^{2} \sec ^{2} \theta \\
d u & =2 x^{\prime} d x^{\prime} & d x^{\prime}=z \sec ^{2} \theta d \theta
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mathbf{E} & =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\int_{0^{2}+z^{2}}^{L^{2}+z^{2}} \frac{-1}{u^{3 / 2}}\left(\frac{d u}{2}\right), 0, z \int_{\tan ^{-1}\left(\frac{0}{z}\right)}^{\tan ^{-1}\left(\frac{L}{z}\right)} \frac{z \sec ^{2} \theta d \theta}{\left(z^{2} \sec ^{2} \theta\right)^{3 / 2}}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle-\frac{1}{2} \int_{z^{2}}^{L^{2}+z^{2}} u^{-3 / 2} d u, 0, z \int_{0}^{\tan ^{-1}\left(\frac{L}{z}\right)} \frac{z \sec ^{2} \theta d \theta}{z^{3} \sec ^{3} \theta}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle-\left.\frac{1}{2}\left(-2 u^{-1 / 2}\right)\right|_{z^{2}} ^{L^{2}+z^{2}}, 0, \frac{1}{z} \int_{0}^{\tan ^{-1}\left(\frac{L}{z}\right)} \cos \theta d \theta\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\left.\left(u^{-1 / 2}\right)\right|_{z^{2}} ^{L^{2}+z^{2}}, 0,\left.\frac{1}{z}(\sin \theta)\right|_{0} ^{\tan ^{-1}\left(\frac{L}{z}\right)}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\frac{1}{\sqrt{L^{2}+z^{2}}}-\frac{1}{z}, 0, \frac{1}{z} \sin \tan ^{-1}\left(\frac{L}{z}\right)\right\rangle .
\end{aligned}
$$

Draw the triangle implied by $\alpha=\tan ^{-1}(L / z)$ and use it to determine $\sin \alpha$.

Therefore, the electric field at $\mathbf{r}=\langle 0,0, z\rangle$ is

$$
\mathbf{E}=\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\frac{1}{\sqrt{L^{2}+z^{2}}}-\frac{1}{z}, 0, \frac{1}{z} \frac{L}{\sqrt{z^{2}+L^{2}}}\right\rangle .
$$

In order to see what happens if $z \gg L$, rewrite the formula so that each term is a ratio of L and z, z being in the denominator, and get rid of the square roots by using the binomial theorem.

$$
\left.\left.\left.\left.\begin{array}{rl}
\mathbf{E} & =\frac{\lambda}{4 \pi \epsilon_{0}}\left\langle\frac{1}{z \sqrt{\frac{L^{2}}{z^{2}}+1}}-\frac{1}{z}, 0, \frac{1}{z} \frac{L}{z \sqrt{1+\frac{L^{2}}{z^{2}}}}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\frac{1}{\sqrt{\frac{L^{2}}{z^{2}}+1}}-1,0, \frac{L}{z} \frac{1}{\sqrt{1+\frac{L^{2}}{z^{2}}}}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\left(1+\frac{L^{2}}{z^{2}}\right)^{-1 / 2}-1,0, \frac{L}{z}\left(1+\frac{L^{2}}{z^{2}}\right)^{-1 / 2}\right\rangle \\
& \left.=\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\sum_{k=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2}+1\right)}{\Gamma(k+1) \Gamma\left(-\frac{1}{2}-k+1\right)}\left(\frac{L^{2}}{z^{2}}\right)^{k}-1,0, \frac{L}{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2}+1\right)}{\Gamma(k+1) \Gamma\left(-\frac{1}{2}-k+1\right)}\left(\frac{L^{2}}{z^{2}}\right)^{k}\right\rangle\right) \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(k+1) \Gamma\left(\frac{1}{2}-k\right)}\left(\frac{L}{z}\right)^{2 k}-1,0, \frac{L}{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(k+1) \Gamma\left(\frac{1}{2}-k\right)}\left(\frac{L}{z}\right)^{2 k}\right\rangle \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\left[\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(1) \Gamma\left(\frac{1}{2}\right)}\left(\frac{L}{z}\right)^{0}+\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(2) \Gamma\left(-\frac{1}{2}\right)}\left(\frac{L}{z}\right)^{2}+\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{3}{2}\right)}\left(\frac{L}{z}\right)^{4}+\cdots\right]-1,0,\right. \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle\left[1-\frac{1}{2}\left(\frac{L^{2}}{z^{2}}\right)+\frac{3}{8}\left(\frac{L^{4}}{z^{4}}\right)-\cdots\right]-1,0, \frac{1}{2}\right) \\
& \left.\left.\left.=\frac{\lambda}{4 \pi(1) \Gamma\left(\frac{1}{2}\right)} \frac{L}{z}\right)^{0}+\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(2) \Gamma\left(-\frac{1}{2}\right)}\left(\frac{L}{z}\right)^{2}+\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{3}{2}\right)}\left(\frac{L}{z}\right)^{4}+\cdots\right]\right\rangle \\
z
\end{array} \frac{L^{2}}{z^{2}}\right)+\frac{3}{8}\left(\frac{L^{4}}{z^{4}}\right)^{2}-\cdots\right]\right\rangle\right)
$$

If $z \gg L$, then L / z is small, but L^{2} / z^{2} and higher-order terms are so much smaller by comparison that they can be neglected.

$$
\begin{aligned}
\mathbf{E} & \approx \frac{\lambda}{4 \pi \epsilon_{0}} \frac{1}{z}\left\langle 0,0, \frac{L}{z}\right\rangle \\
& \approx \frac{\lambda}{4 \pi \epsilon_{0}} \frac{L}{z^{2}}\langle 0,0,1\rangle \\
& \approx \frac{\lambda}{4 \pi \epsilon_{0}} \frac{L}{z^{2}} \hat{\mathbf{z}} \\
& \approx \frac{1}{4 \pi \epsilon_{0}} \frac{Q}{z^{2}} \hat{\mathbf{z}}
\end{aligned}
$$

The lesson is that far away from the line segment the electric field is the same as if it were a point charge.

